ірраціональне число

Ірраціональне число - це дійсне число. яке не є раціональним. тобто не може бути представлено у вигляді дробу m n >>. де m - ціле число. n - натуральне число. Ірраціональне число може бути представлено у вигляді нескінченної неперіодичної десяткового дробу.

Безліч ірраціональних чисел зазвичай позначається великою латинською літерою I> в напівжирному зображенні без заливки. Таким чином: I = R ∖ Q = \ mathbb \ backslash \ mathbb>. тобто безліч ірраціональних чисел є різниця множин речових і раціональних чисел.

Про існування ірраціональних чисел, точніше відрізків. несумірних з відрізком одиничної довжини, знали вже стародавні математики: їм була відома, наприклад, несумісність діагоналі і сторони квадрата, що рівносильно ірраціональності числа 2 >>.

античність

Концепція ірраціональних чисел була неявним чином сприйнята індійськими математиками в VII столітті до нашої ери, коли Манава (бл. 750 р. До н.е.. - бл. 690 р. До н.е..) З'ясував, що квадратний корінь деяких натуральних чисел, таких як 2 і 61, не можуть бути явно виражені [джерело не вказано 571 день].

Перший доказ існування ірраціональних чисел зазвичай приписується Гіппаса з Метапонта (бл. 500 рр. До н. Е.), Піфагорійці. За часів піфагорійців вважалося, що існує єдина одиниця довжини, досить мала і неподільна, яка ціле число раз входить в будь-який відрізок [джерело не вказано 571 день].

Немає точних даних про те, ірраціональність якого числа було доведено Гіппаса. Згідно з легендою він знайшов його вивчаючи довжини сторін пентаграми. Тому розумно припустити, що це було золотий перетин [джерело не вказано 542 дня].

Грецькі математики назвали це відношення несумірних величин алогос (невимовним), проте згідно з легендами не віддати Гіппаса належної поваги. Існує легенда, що Гиппас зробив відкриття, перебуваючи в морському поході, і був викинутий за борт іншими піфагорійцями «за створення елементи всесвіту, який заперечує доктрину, що все суті у всесвіті можуть бути зведені до цілих чисел і їх відносин». Відкриття Гіппаса поставило перед піфагорейської математикою серйозну проблему, зруйнувавши яке лежало в основі всієї теорії припущення, що числа і геометричні об'єкти єдині і нероздільні.

Феодор Киренский довів ірраціональність коренів натуральних чисел до 17 (виключаючи, природно, точні квадрати - 1, 4, 9 та 16), але зупинився на цьому, тому що имевшаяся в його інструментарії алгебра не дозволяла довести ірраціональність квадратного кореня з 17. З приводу того , яким могло бути це доказ, істориками математики було висловлено кілька різних припущень. Згідно найбільш правдоподібного [2] припущенням Жана ІТАР [fr]. воно було засноване на теоремі про те, що непарне квадратне число ділиться на вісім із залишком один [3].

Пізніше Евдокс Кнідський (410 або 408 р. До н.е.. - 355 або 347 р. До н.е..) Розвинув теорію пропорцій, яка брала до уваги як раціональні, так і ірраціональні відносини. Це послужило підставою для розуміння фундаментальної суті ірраціональних чисел. Величина стала вважатися не числом, але позначенням сутностей, таких як відрізки прямих, кути, площі, обсяги, проміжки часу - сутностей, які можуть змінюватися безперервно (в сучасному розумінні цього слова). Величини були протиставлені числах, які можуть змінюватися лише «стрибками» від одного числа до сусіднього, наприклад, з 4 на 5. Числа складаються з найменшою неподільною величини, в той час як величини можна зменшувати нескінченно.

Оскільки жодне кількісне значення не пов'язана із величиною, Евдокс зміг охопити і співмірні, і несумірні величини при визначенні дробу як відносини двох величин, і пропорції як рівності двох дробів. Прибравши з рівнянь кількісні значення (числа), він уникнув пастки, що складається в необхідності назвати ірраціональну величину числом. Теорія Евдокса дозволила грецьким математикам зробити неймовірний прогрес в геометрії, надавши їм необхідне логічне обгрунтування для роботи з непомірними величинами. «Книга 10 Елементів» Евкліда присвячена класифікації ірраціональних величин.

Середньовіччя

Середні століття ознаменувалися прийняттям таких понять як нуль, негативні числа, цілі і дробові числа, спершу індійськими, потім китайськими математиками. Пізніше приєдналися арабські математики, які першими стали вважати негативні числа алгебраїчними об'єктами (поряд і на рівних правах з позитивними числами), що дозволило розвинути дисципліну, нині звану алгеброю.

Раціональної [величиною] є, наприклад, 10, 12, 3%, 6% і так далі, оскільки ці величини вимовлені і виражені кількісно. Що не раціонально, то ірраціонально, і неможливо вимовити або надати відповідну величину кількісно. Наприклад, квадратний корінь чисел таких так 10, 15, 20 - не є квадратами.

На противагу концепції Евкліда, що величини суть в першу чергу відрізки прямих, Аль Махане вважав цілі числа і дроби раціональними величинами, а квадратні і кубічні корені - ірраціональними. Він також ввів арифметичний підхід до безлічі ірраціональних чисел, оскільки саме він показав ірраціональність наступних величин:

результат складання ірраціональної величини і раціональної, результат віднімання раціональної величини з ірраціональної, результат віднімання ірраціональної величини з раціональної.

Єгипетський математик Абу Каміл (бл. 850 р. Н.е.. - бл. 930 р. Н.е..) Був першим, хто визнав прийнятним визнати ірраціональні числа рішенням квадратних рівнянь або коефіцієнтами в рівняннях - в основному, у вигляді квадратних або кубічних коренів, а також коренів четвертого ступеня. У X столітті іракський математик Аль Хашимі вивів загальні докази (а не наочні геометричні демонстрації) ірраціональності твори, приватного і результатів інших математичних перетворень над ірраціональними і раціональними числами. Ал Хазін (900 р. Н.е.. - 971 р. Н.е..) Подає таке визначення раціональної та ірраціональної величини:

Нехай одинична величина міститься в даній величині один або кілька разів, тоді ця [дана] величина відповідає цілому числу ... Кожна величина, яка становить половину, або третину, або чверть одиничної величини, або, порівняно з одиничною величиною становить три п'ятих від неї, це раціональна величина. І в цілому, будь-яка величина, яка відноситься до одиничної як одне число до іншого, є раціональною. Якщо ж величина не може бути представлена ​​як кілька або частина (l / n), або кілька частин (m / n) одиничної довжини, вона ірраціональна, тобто невимовна інакше як за допомогою коренів.

Багато з цих ідей були пізніше перейняті європейськими математиками після перекладу на латину арабських текстів в XII столітті. Аль Хассар, арабська математик з Магрибу, який спеціалізувався на ісламських законах про спадщину, в XII столітті ввів сучасну символьну математичну нотацію для дробів, розділивши чисельник і знаменник горизонтальною лінією. Та ж нотація з'явилася потім в роботах Фібоначчі в XIII столітті. Протягом XIV-XVI ст. Мадхава з Сангамаграми і представники Керальской школи астрономії та математики досліджували нескінченні ряди, що сходяться до деяких ірраціональним числам, наприклад, до π, а також показали ірраціональність деяких тригонометричних функцій. Джестадева привів ці результати в книзі «Йуктібхаза».

Новий час

Ланцюгові дроби. тісно пов'язані з ірраціональними числами (ланцюговий дріб, що представляє дане число, нескінченна тоді і тільки тоді, коли число є ірраціональним), були вперше досліджені Катальді в 1613 році, потім знову привернули до себе увагу в роботах Ейлера, а на початку XIX століття - в роботах Лагранжа. Діріхле також вніс значний вклад в розвиток теорії ланцюгових дробів. У 1761 року Ламберт з помощю ланцюгових дробів показав, що π не є раціональним числом, а також що e x> і tg ⁡ x x> ірраціональні при будь-якому ненулевом раціональному x. Хоча доказ Ламберта можна назвати незавершеним, прийнято вважати його досить суворим, особливо з огляду на час його написання. Лежандр в 1794 році, після введення функції Бесселя - Кліффорда, показав, що π 2> ірраціонально, звідки ірраціональність π слід тривіально (раціональне число в квадраті дало б раціональне).

Існування трансцендентних чисел було доведено Ліувілль в 1844-1851 роках. Пізніше Георг Кантор (1873) показав їх існування, використовуючи інший метод, і обгрунтував, що будь-який інтервал речового ряду містить нескінченно багато трансцендентних чисел. Шарль Ерміта довів в 1873 році, що e трансцендентно, а Фердинанд Ліндеман в 1882 році, грунтуючись на цьому результаті, показав трансцендентність π. Доказ Ліндеманна було потім спрощено Вейерштрассом в 1885 році, ще більш спрощено Давидом Гільбертом в 1893 році і, нарешті, доведено до майже елементарного Адольфом Гурвіцем і Паулем Горданом.

Схожі статті